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Abstract  

This paper describes mass personalization, a 

framework for combining mass media with a highly 

personalized Web-based experience. We introduce 

four applications for mass personalization: 

personalized content layers, ad hoc social 

communities, real-time popularity ratings and 

virtual media library services. Using the ambient 

audio originating from the television, the four 

applications are available with no more effort than 

simple television channel surfing. Our audio 

identification system does not use dedicated 

interactive TV hardware and does not compromise 

the user’s privacy. Feasibility tests of the proposed 

applications are provided both with controlled 

conversational interference and with “living-room” 

evaluations. 

 

1. Introduction 

 
“Mass media is the term used to denote, as a class, 

that section of the media specifically conceived and 

designed to reach a very large audience… forming 

a mass society with special characteristics, notably 

atomization or lack of social connections” 

(en. wikipedia.org). 

 

These characteristics of mass media contrast 

sharply with the World Wide Web. Mass-media 

channels typically provide limited content to many 

people; the Web provides vast amounts of 

information, most of interest to few. Mass-media 

channels typically beget passive, largely 

anonymous, consumption, while the Web provides 

many interactive opportunities like chatting, 

emailing and trading. Our goal is to combine the 

best of both worlds: integrating the relaxing and 

effortless experience of mass-media content with 

the interactive and personalized potential of the 

Web, providing mass personalization. 

 

Beyond presenting mass personalization 

applications, our main technical contribution is in 

creating a system that does not rely on future 

hardware or physical connections between TVs and 

computers. Instead, we introduce a system that can 

simply ‘listen’ to ambient audio and connect the 

viewer with services and related content on the 

Web. As shown in Figure 1, our system consists of 

three distinct components: a client-side interface, an 

audio-database server (with mass-media audio 

statistics), and a social-application web server. The 

client-side interface samples and irreversibly 

compresses the viewer’s ambient audio to summary 

statistics. These statistics are streamed from the 

viewer’s personal computer to the audio-database 

server for identification of the background audio 

(e.g., ‘Seinfeld’ episode 6101, minute 3:03). The 

audio database transmits this information to the 

social-application server, which provides 

personalized and interactive content back to the 

viewer. Continuing with the previous example, if 

friends of the viewer were watching the same 

episode of ‘Seinfeld’ at the same time, the social-

application server could automatically create an on-

line ad hoc community of these “buddies”. This 

community allows members to comment on the 

broadcast material in real time. 
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Figure 1: Flow chart of the mass-personalization 

applications. 



The viewer’s acoustic privacy is maintained by the 

irreversibility of the mapping from audio to 

summary statistics. Unlike the speech-enabled 

proactive agent by Hong et al. (2001), our approach 

will not “overhear” conversations. Furthermore, no 

one receiving (or intercepting) these statistics is 

able to eavesdrop, on such conversations, since the 

original audio does not leave the viewer’s computer 

and the summary statistics are insufficient for 

reconstruction. Further, the system can easily be 

designed to use an explicit ‘mute/un-mute’ button, 

to give the viewer full control of when acoustic 

statistics are collected for transmission. 

 

Although we apply our techniques to television, we 

do not use the visual channel as our data source. 

Instead, we use audio for three pragmatic reasons. 

First, with visual data, the viewer either must have 

a TV-tuner card installed in her laptop (which is 

rare), or must have a camera pointed towards the 

TV screen (which is cumbersome). In contrast, non-

directional microphones are built into most laptops 

and desktops. Second, audio recording does not 

require the careful normalization and calibration 

needed for video sources (camera alignment, image 

registration, etc.). Third, processing audio takes less 

computation than processing video, due to lower 

input-data rates. This is especially important since 

we process the raw data on the client’s machine (for 

privacy reasons), and would like to keep 

computation requirements at a minimum. 

 

In the next section, we describe four applications, 

aimed at supplementing television material with 

personal and social interactions related to the 

television content. Section 3 describes some of the 

infrastructure required to deploy these applications. 

We then describe the core technology needed for 

ambient-sound matching (Section 4). We provide 

quantitative measures of the robustness and 

precision of the audio matching component 

(Section 5.1) as well as the evaluation of the 

complete system (Section 5.2). The paper concludes 

with a discussion on the scope, limitations, and 

future extensions of this application area.  

 

2. Personalizing Broadcast Content: Four 

Applications 
 

In this section, we describe four applications to 

make TV more personalized, interactive and social: 

personalized information layers, ad hoc social peer 

communities, real-time popularity ratings, and TV-

based bookmarks. 

      
 

Figure 2: A hypothetical interface showing the 
dynamic output of the mass-personalization 
applications. Personalized information layers are 
shown as “wH@T’s Layers” (top) and as sponsored 
links (right-side middle). Ad-hoc chat is shown under 
“ChaT.V.” (left-side middle). Real-time popularity 
ratings are presented as line graphs (left top) and 
Video bookmarks are under “My Video Library” 
(bottom). 



 

2.1 Personalized Information Layers 

 

The first application provides information that is 

complementary to the mass-media channel (e.g., 

TV or radio) in an effortless manner.  As with 

proactive software agents (Rhodes et al., 2003), we 

provide additional layers of related information, 

such as fashion, politics, business, health, or 

traveling. For example, while watching a news 

segment on Tom Cruise, a fashion layer might 

provide information on what designer clothes and 

accessories the presented celebrities are wearing 

(see “wH@T’s Layers” in Figure 2). 

 

The feasibility of providing the complementary 

layers of information is related to the cost of 

annotating the database of mass-media content and 

the number of times any given piece of content is 

retransmitted. We evaluated how often content is 

retransmitted for the ground-truth data used in the 

evaluations presented in Section 5. We found that 

up to 1/2 (for CNN Headlines) of the content was 

retransmitted within 4 days, with higher rates 

expected for longer time windows. 

 

Thus, if ‘Seinfeld’ is annotated once, years of 

reruns would benefit from relevant information 

layers. Interestingly, a channel like MTV (VH-1), 

where content is often repeated, has internally 

introduced the concept of pop-ups that accompany 

music clips and provide additional entertaining 

information. The concept of complementary 

information has passed the feasibility test, at least 

in the music-video domain. 

 

In textual searches, complementary information 

providing relevant products and services is often 

associated via a bidding process (e.g., sponsored 

links on Web search sites such as Google.com). A 

similar procedure could be adapted to mass-

personalization applications. Thus, content 

providers or advertisers might bid for specific 

television segments. For example, local theaters or 

DVD rental stores might bid on audio from a movie 

trailer (see “Sponsored Links” in the center right 

panels of Figure 2). 

 

In many mass-media channels, textual information 

(closed captioning) accompanies the audio stream. 

In these cases, the closed captions provide 

keywords useful for searching for related material. 

The search results can be combined with a viewer’s 

personal profile and preferences (ZIP code and 

‘fashion’) in order to display a web-page with 

content automatically obtained from web-pages or 

advertisement repositories using the extracted 

keywords. A method for implementing this process 

was described by Henzinger et al. (2003). 

 

In the output of our prototype system, shown in the 

top right panels of Figure 2, we hand labeled the 

content indices corresponding to an hour of footage 

that was taped and replayed. This annotation 

provided short summaries and associated URLs for 

the fashion preferences of celebrities appearing on 

the TV screen during the corresponding 5-second 

segment. While we did this summarization 

manually within our experiment, automatic 

summarization technologies (Kupiec et al., 1995) 

could be used to avoid manual summarization, or 

bidding techniques described above could be used 

in a production system to provide related ads. 

 

2.2 Ad-hoc Peer Communities  

 

As evidenced by the popularity of message boards 

relating to TV shows and current events, people 

often want to comment on the content of mass-

media broadcasts. However, it is difficult to know 

with whom to chat during the actual broadcast. The 

second application provides another venue for 

commentary, an ad hoc social community. 

 

This ad hoc community includes viewers watching 

the same show on TV. We create this community 

from the set of viewers whose audio statistics 

matched the same content in our audio database. 

These viewers are automatically linked by the 

social-application server. Thus, a viewer who is 

watching the latest CNN headlines can chat, 

comment on, or read other people’s responses to the 

ongoing broadcast. The group members can be 

further constrained to contain only people in the 

viewer’s social network (i.e. on-line friend 

community) or to contain established experts on the 

topic. 

 

Importantly, as the viewer’s viewing context 

changes (by changing channels), the community is 

automatically changed by re-sampling the ambient 

audio. The viewer need never indicate what 

program is being watched; this is particularly 

helpful for the viewer who changes channels often, 

and is often not aware of the exact show or channel 

that is currently being viewed. 

 

This application differs dramatically from the 

personalized information layers. This service 

provides a commenting medium (chat room, 

message board, wiki page or video link) where 

responses of other viewers that are currently 

watching the same channel can be shared (see 

“ChaT.V.” in the center left panels of Figure 2). 

Personalized information layers allow only limited 



interaction by the viewer and are effectively 

scripted prior to broadcast according to annotations 

or auction results. In contrast, the content presented 

by this application is created by ongoing 

collaborative (or combative) efforts by the viewer 

and community responses. 

 

As an extension, these chat sessions also have an 

interesting intersection with Personalized 

Information Layers. Program-specific chat sessions 

can be replayed synchronously with the program 

during reruns of that content, giving the viewer of 

this later showing access to the comments of 

previous viewers, with the correct timing relative to 

the program content. 

 

To enable this application, the social-application 

server simply maintains a list of viewers currently 

‘listening to’ similar audio, with further restrictions 

as indicated by the viewer’s personal preferences. 

Alternately, these personalized chat rooms can self 

assemble by matching viewers with shared 

historical viewing preferences (e.g., daily viewings 

of ‘Star Trek’), as is commonly done in 

“collaborative filtering” applications (Pennock et 

al. 2000). 

 

2.3 Real-Time Popularity Ratings  

 

Popularity ratings of broadcasting events are of 

interest to viewers, broadcasters, and advertisers. 

These needs are partially filled by measurement 

systems like the Nielsen ratings. However, these 

ratings require dedicated hardware installation and 

tedious cooperation from the participating 

individuals. The third application is aimed at 

providing ratings information (similar to Nielsen’s 

systems) but with low latency, easy adoption, and 

for presentation to the viewers as well as the 

content providers. For example, a viewer can 

instantaneously be provided with a real time 

popularity rating of which channels are being 

watched by her social network or alternatively by 

people with similar demographics (see ratings 

graphs in top left panels of Figure 2). 

 

Given the matching system described to this point, 

the popularity ratings are easily derived by simply 

maintaining counters on each of the shows being 

monitored. The counters can be intersected with 

demographic group data or geographic group data. 

 

Having real-time, fine-grain ratings is more 

valuable than ratings achieved by the Nielsen 

system. Real-time ratings can be used by viewers to 

“see what’s hot” while it is still ongoing (for 

example, by noticing an increased rating during the 

2004 super bowl half-time). They can be used by 

advertisers and content providers to dynamically 

adjust what material is being shown to respond to 

drops in viewership. This is especially true for ads: 

the unit length is short and unpopular ads are easily 

replaced by other versions from the same campaign, 

in response to viewer rating levels.  

 

2.3 Video “Bookmarks” 

 

Television broadcasters, such as CBS and NBC, are 

starting to allow content to be (re-)viewed on 

demand, for a fee, over other channels (e.g., iPoD 

video downloads or video streaming), allowing 

viewers to create personalized libraries of their 

favorite broadcast content (Mann, 2005). The fourth 

application provides a low-effort way to create 

these video libraries. 

 

When a viewer sees a segment of interest on TV, 

she simply presses a button on her client machine, 

to “bookmark” that point in that broadcast. The 

current snippet of the ambient audio is recorded, 

processed and saved. This snippet provides a 

unique signature into the program being watched. 

This bookmark can either be used to retrieve the 

program for later viewing or to mark that specific 

portion of the program as being of interest. As with 

other bookmarks, the reference can then be shared 

with friends or saved for future personal retrieval. 

 

Figure 2 shows an example of the selection 

interface under “My Video Library” at bottom of 

the second screen shot. The red “record” button 

adds the current program episode to her favorites-

library. Two video bookmarks are shown as green 

“play” buttons, with the program name and record 

date attached. 

 

The program material associated with the 

bookmarks can be viewed-on-demand through a 

Web-based streaming application, among other 

access methods, according to the policies set by the 

content owner. Depending on these policies, the 

streaming service can provide free single-viewing 

playback, collect payments as the agent for the 

content owners, or insert advertisements that would 

provide payment to the content owners. 

 

3. Supporting Infrastructure 

 

The four applications described in the previous 

section share the same client-side and audio-

database components and differ only in what 

information is collected and presented by the 

social-application server. We describe these 

common components in this section. We also 

provide a brief description of how these were 

implemented in our test setup. 



 

3.1 Client-interface setup  

 

The client-side setup uses a laptop (or desktop) to 

(1) sample the ambient audio, (2) irreversibly 

convert short segments of that audio into distinctive 

and robust summary statistics, and (3) transmit 

these summary statistics in real-time to the audio 

database server.  

 

We used a version of the audio-fingerprinting 

software created by (Ke et al., 2005) to provide 

these conversions. The transmitted audio statistics 

also include a unique identifier for the client 

machine to ensure that the correct content-to-client 

mapping is made by the social-application server. 

The client software continually records 5-second 

audio segments and converts each snippet to 415 

frames of 32-bit descriptors, according to the 

method described in Section 4. The descriptors, not 

the audio itself, are sent to the audio server. By 

sending only summary statistics, the viewer’s 

acoustic privacy is maintained: the highly 

compressive many-to-one mapping from audio to 

statistics is not invertible. 

 

Although a variety of setups are possible, for our 

experiments, we used an Apple iBook laptop as the 

client computer and its built-in microphone for 

sampling the viewer’s ambient audio. 

 

3.2 Audio-database server setup  

 

The audio-database server accepts audio statistics 

(associated with the client id) and compares those 

received “fingerprints” to its database of recent 

broadcast media. It then sends the best-match 

information, along with a match confidence and the 

client id, to the social-application server. 

 

In order to perform its function, the audio-database 

server must have access to a database of broadcast 

audio data. However, the actual audio stream does 

not need to be stored. Instead, only the compressed 

representation (32-bit descriptor) is stored. This 

allows as much as a year of broadcast fingerprints 

to be stored in less than 1 GB of memory. 

 

The audio database was implemented on a single-

processor, 3.4GHz Pentium 4 workstation, with 3 

GB of memory. The audio-database server received 

a query from the viewer each 5 seconds. As will be 

described in Section 4, each 5-second query was 

independently matched against the database. 

 

3.3 Social-application server setup  

 

The final component is the social-application 

server. The social-application server accepts web-

browser connections (associated with client 

computers). Using the content-match results 

provided by the audio-database server, the social-

application server collects personalized content for 

each viewer and presents that content using an open 

web browser on the client machine. This 

personalized content can include the material 

presented earlier: ads, information layers, 

popularity information, video “book marking” 

capabilities, and links to broadcast-related chat 

rooms and ad-hoc social communities. 

 

For simplicity, in our experiments, the social-

application server was set up on the same 

workstation as the audio-database server. The 

social-app server receives the viewer/content-index 

matching information, with the confidence score, 

from the audio-database server as the audio-

database server determines those matches. It 

maintains client-session-specific state information, 

such as the current and previous match values and 

their confidence, the viewer profile (if available), 

recently presented chat messages (to provide 

conversational context), and previously viewed 

content (to avoid repetition). With this information, 

it dynamically creates web pages for each client 

session, which include the personalized information 

derived from the viewer profile (if available) and 

her audio-match content. 

 

4. Audio Fingerprinting  
 

For our system, the main challenge is accurately 

matching an audio query to a large database of 

audio snippets, in real-time and with low latency. 

High accuracy requires discriminative audio 

representations that are resistant to the expected 

distortions introduced by compression, 

broadcasting and client recording. This paper 

adapts the music-identification system proposed by 

(Ke et al., 2005) to handle TV audio data and 

queries. Other audio identification systems are also 

applicable (e.g., Shazam Entertainment, 2005) but 

the system by (Ke et al., 2005) has the advantage of 

being compact, efficient, and non-proprietary 

(allowing reproduction of results). 

 

The audio-identification system starts by 

decomposing each query snippet (e.g., five-seconds 

of recorded audio) into overlapping frames spaced 

roughly 12 ms apart. Each frame is converted into a 

highly discriminative 32-bit descriptor, specifically 

trained to overcome typical audio noise and 

distortion. These identifying statistics are sent to a 

server, where they are matched to a database of 

statistics taken from mass-media clips. The returned 



hits define the candidate list from the database. 

These candidates are evaluated using a first-order 

hidden Markov model, which provides high scores 

to candidate sequences that are temporally 

consistent with the query snippet. If the consistency 

score is sufficiently high, the database snippet is 

returned as a match. The next two subsections 

provide a description of the main components of the 

method.  

 

4.1 Hashing Descriptors 

 

Ke et al. (2005) used a powerful machine learning 

technique, called boosting, to find highly 

discriminative, compact statistics for audio. Their 

procedure trained on labeled pairs of positive 

examples (where q and x are noisy versions of the 

same audio) and negative examples (q and x are 

from different audio). During this training phase, 

boosting uses the labeled pairs to select a 

combination of 32 filters and thresholds that jointly 

create a highly discriminative statistic. The filters 

localize changes in the spectrogram magnitude, 

using first- and second-order differences across 

time and frequency (see Figure 3). One benefit of 

using these simple difference filters is that they can 

be calculated efficiently using the integral image 

technique suggested by (Viola and Jones, 2002). 

 

The outputs of these filters are thresholded, giving 

a single bit per filter at each audio frame. These 32 

threshold results form the only transmitted 

description of that frame of audio. This sparseness 

in encoding ensures the privacy of the viewer to 

unauthorized eavesdropping. Further, these 32-bit 

output statistics are robust to the audio distortions 

in the training data, so that positive examples 

(matching frames) have small hamming distances 

(distance measuring differing number of bits) and 

negative examples (mismatched frames) have large 

hamming distances. 

 

The 32-bit descriptor itself is used as a hash key for 

direct hashing. The boosting procedure generates a 

descriptor that is itself a well-balanced hash 

function. Retrieval rates are further improved by 

querying not only the query descriptor itself, but 

also a small set of similar descriptors (up to a 

hamming distance of 2). 

 

4.2 Within-query consistency 

 

Once the query frames are individually matched to 

the audio database, using the hashing procedure, the 

potential matches are validated. Simply counting 

the number of frame matches is inadequate, since a 

database snippet might have many frames matched 

to the query snippet but with completely wrong 

temporal structure. 

 

To insure temporal consistency, each hit is viewed 

as support for a match at a specific query-to-

database offset. For example, if the eighth 

descriptor (q8) in the 5-second, 415-frame-long 

‘Seinfeld’ query snippet, q, hits the 1008
th
 database 

descriptor (x1008), this supports a candidate match 

between the 5-second query and frames 1001 

through 1415 in the database. Other matches 

mapping qn to x1000+n (1≤n≤415) would support this 

same candidate match. 

 

In addition to temporal consistency, we need to 

account for frames when conversations temporarily 

drown out the ambient audio. We model this 

interference as an exclusive switch between 

ambient audio and interfering sounds. For each 

query frame i, there is a hidden variable, yi: if yi = 0, 

the i-th frame of the query is modeled as 

interference only; if yi = 1, the i-th frame is 

modeled as from clean ambient audio. Taking this 

extreme view (pure ambient or pure interference) is 

justified by the extremely low precision with which 

each audio frame is represented (32 bits) and is 

softened by providing additional bit-flip 

probabilities for each of the 32 positions of the 

frame vector under each of the two hypotheses (yi = 

0 and yi = 1). Finally, we model the between-frame 

transitions between ambient-only and interference-

only states as a hidden first-order Markov process, 

with transition probabilities derived from training 

data. We re-used the 66-parameter probability 

model given by (Ke et al., 2005).  

 

Our final model of the match probability between a 

query vector, q, and an ambient-database vector at 

an offset of N frames, x
N
, is: 

,
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Figure 3: Audio (A) is 
converted into a 
spectrogram (B). The 
spectrogram frames (C) 
are processed by 32 
contrast filters and 
thresholded to produce 
a 32-bit descriptor (D). 
Contrast filters subtract 
neighboring rectangular 
spectrogram regions 
(white regions -black 
regions), and can be 
calculated using the 
integral-image 
technique. 
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the two 32-bit frame vectors qn and xm. This model 

incorporates both the temporal consistency 

constraint and the ambient/interference hidden 

Markov model.  

 

4.3 Post-match consistency filtering  

 

People often talk with others while watching 

television, resulting in sporadic but strong acoustic 

interference, especially when using laptop-based 

microphones for sampling the ambient audio. Given 

that most conversational utterances are two to three 

seconds in duration (Buttery and Korhonen, 2005), 

a simple exchange might render a 5-second query 

unrecognizable. 

 

To handle these intermittent low-confidence 

mismatches, we use post-match filtering. We use a 

continuous-time hidden Markov model of channel 

switching with an expected dwell time (i.e. time 

between channel changes) of L seconds. The social-

application server indicates the highest-confidence 

match within the recent past (along with its 

“discounted” confidence) as part of the state 

information associated with each client session. 

Using this information, the server selects either the 

content-index match from the recent past or the 

current index match, based on whichever has the 

higher confidence. 

 

We use Mh and Ch to refer to the best match for the 

previous time step (5 seconds ago) and its log-

likelihood confidence score. If we simply apply the 

Markov model to this previous best match, without 

taking another observation, then our expectation is 

that the best match for the current time is that same 

program sequence, just 5 seconds further along, and 

our confidence in this expectation is Ch - l/L where l 

= 5 seconds is the query time step. This discount of 

l/L in the log likelihood corresponds to the Markov 

model probability, e
-l/L

, of not switching channels 

during the l-length time step. 

 

An alternative hypothesis is generated by the audio 

match for the current query. We use M0 to refer to 

the best match for the current audio snippet: that is, 

the match that is generated by the audio 

fingerprinting software. C0 is the log-likelihood 

confidence score given by the audio fingerprinting 

software. 

 

If these two matches (the updated historical 

expectation and the current snippet observation) 

give different matches, we select the hypothesis 

with the higher confidence score: 

{ }
{ }  
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where M0 is the match that is used by the social-

application server for selecting related content and 

M0 and C0 are carried forward on the next time step 

as Mh and Ch. 

 

5. Evaluation of System Performance  

 

In this section, we provide a quantitative evaluation 

of our ambient-audio identification system. The 

first set of experiments provides in-depth results 

with our matching system. The second set of results 

provides an overview of the performance of an 

integrated system running in a live environment. 

 

5.1 Empirical Evaluation  

 

Here, we examine the performance of our audio-

matching system in detail. We ran a series of 

experiments using 4 days of video footage. The 

footage was captured from three days of one 

broadcast station and one day from a different 

station. We jack-knifed this data to provide disjoint 

query/database sets: whenever we used a query to 

probe the database, we removed the minute that 

contained that query audio from consideration. In 

this way, we were able to test 4 days of queries 

against 4 days (minus one minute) of data. 

 

We hand labeled the 4 days of video, marking the 

repeated material. This included most 

advertisements (1348 minutes worth), but omitted 

the 12.5% of the advertisements that were aired 

only once during this four-day sample. The marked 

material also included repeated programs (487 

minutes worth), such as repeated news programs or 

repeated segments within a program (e.g., repeated 

showings of the same footage on a home-video 

rating program). We also marked as repeats those 

segments within a single program (e.g., the movie 

“Treasure Island”) where the only sounds were 

theme music and the repetitions were 

indistinguishable to a human listener, even if the 

visual track was distinct. This typically occurred 

during the start and end credits of movies or series 

programs and during news programs which 

replayed sound bites with different graphics. 

 

We did not label as repeats: similar sounding music 

that occurred in different programs (e.g., the 

suspense music during “Harry Potter” and random 

soap operas) or silence periods (e.g., between 

segments, within some suspenseful scenes). 

 

Table 1 shows our results from this experiment, 

under “clean” acoustic conditions, using 5-second 

and 10-second query snippets. Under these “clean” 

conditions, we jack-knifed the captured broadcast 

audio without added interference. We found that 



most of the false positive results on the 5-second 

snippets were during silence periods, during 

suspense-setting music (which tended to have 

sustained minor cords and little other structure). 

 

To examine the performance under noisy 

conditions, we compare these results to those 

obtained from audio that includes a competing 

conversation. We used a 4.5-second dialog, taken 

from Kaplan’s TOEFL material (Rymniak, 1997)
1
. 

We scaled this dialog and mixed it into each query 

snippet. This resulted in 1/2 and 5 ½ seconds of 

each 5- and 10-second query being uncorrupted by 

competing noise. The perceived sound level of the 

interference was roughly matched to that of the 

broadcast audio, giving an interference-peak-

amplitude four times larger than the peak amplitude 

of the broadcast audio, due to the richer acoustic 

structure of the broadcast audio. 

 

The results reported in Table 1 under “noisy” show 

similar performance levels to those observed in our 

experiments reported in subsection 5.2. The 

improvement in precision (that is, the drop in false 

positive rate from that seen under “clean” 

conditions) is a result of the interfering sounds 

preventing incorrect matches between silent 

portions of the broadcast audio. 

 

Due to the manner in which we constructed these 

examples, longer query lengths correspond to more 

sporadic discussion, since the competing discussion 

is active about half the time, with short bursts 

corresponding to each conversational exchange. It 

is this type of sporadic discussion that we actually 

observed in our “in-living-room” experiments 

(described in the next section). Using these longer 

query lengths, our recall rate returns to near the rate 

seen for the interference-free version. 

 

 

                                                           
1 The dialog was: (woman’s voice) “Do you think I 

could borrow ten dollars until Thursday?”, (man’s 

voice) “Why not, it’s no big deal.”. 

 

5.2 “In-Living-Room” Experiments  

 

Television viewing generally occurs in one of three 

distinct physical configurations: remote viewing, 

solo seated viewing, and partnered seated viewing. 

We used the system described in Section 3 in a 

complete end-to-end matching system within a 

“real” living-space environment, using a partnered 

seated configuration. We chose this configuration 

since it is the most challenging, acoustically. 

 

Remote viewing generally occurs from a distance 

(e.g., from the other side of a kitchen counter), 

while completing other tasks. In this cases, we 

expect the ambient audio to be sampled by a 

desktop computer placed somewhere in the same 

room as the television. The viewer is away from the 

microphone, making the noise she generates less 

problematic for the audio identification system. She 

is distracted (e.g., by preparing dinner), making 

errors in matching less problematic. Finally, she is 

less likely to be actively channel surfing, making 

historical matches more likely to be valid.  

 

In contrast with remote viewing, during seated 

viewing, we expect the ambient audio to be 

sampled by an laptop, held in the viewer’s lap. 

Further, during partnered, seated viewing, the 

viewer is likely to talk with her viewing partner, 

very close to the sampling microphone. Nearby, 

structured interference (e.g., voices) is more 

difficult to overcome than remote spectrally flat 

interference (e.g., oven-fan noise). This makes the 

partnered seated viewing, with sampling done by 

laptop, the most acoustically challenging and, 

therefore, the configuration that we chose for our 

tests.  

 

To allow repeated testing of the system, we 

recorded approximately one hour of broadcast 

footage onto VHS tape prior to running the 

experiment. This tape was then replayed and the 

resulting ambient audio was sampled by a client 

machine (the Apple iBook laptop mentioned in 

subsection 3.12). 

 

The processed data was then sent to our audio 

server for matching. For the test described in this 

section, the audio-server was loaded with the 

descriptors from 24 hours of broadcast footage, 

including the one hour recorded to VCR tape. With 

this size audio database, the matching of each 5-

second query snippet took consistently less than 1/4 

second, even without statistical sampling (e.g., the 

RANSAC method suggested by Fischler and 

Bolles, 1981). 

 

Table 1: Performance results on 4 days of 5-second 
and 10-second queries operating against 4 days of 
mass media. False-positive rate = FP/(TN+FP); False-
negative rate = FN/(TP+FN); Precision = TP/(TP+FP); 
Recall = TP/(TP+FN). 

 
 Query quality / length 
 clean noisy 
 5 sec 10 sec 5 sec 10 sec 

False-pos. rate 6.4% 4.7% 1.1% 2.7% 
False-neg. rate 6.3% 6.0% 83% 10% 
Precision 87% 90% 88% 94% 
Recall 94% 94% 17% 90% 

 

 



During this experiment, the laptop was held on the 

lap of one of the viewers. We ran five tests of five 

minutes each, one for each of 2-foot increase in 

distance from the television set, from two- to ten-

feet. During these tests, the viewer holding the 

iBook laptop and a nearby viewer conversed 

sporadically. In all cases, these conversations 

started 1/2 to 1 minute after the start of the test. The 

laptop-television distance and the sporadic 

conversation resulted in recordings with acoustic 

interference louder than the television audio 

whenever either viewer spoke.  

 

The interference created by the competing 

conversation, resulted in incorrect best matches 

with low confidence scores for up to 80% of the 

matches, depending on the conversational pattern. 

However, we avoided presenting the unrelated 

content that would have been selected by these 

random associations, by using the simple model of 

channel watching/surfing behavior described in 

subsection 4.2 with an expected dwell time (time 

between channel changes) of 2 seconds. This 

consistent improvement was due to correct and 

strong matches, made before the start of the 

conversation: these matches correctly carried 

forward through the remainder of the 5 minute 

experiment. No incorrect information or chat 

associations were visible to the viewer: our 

presentation was 100% correct. 

 

We informally compared the viewer experience 

using the post-match filtering corresponding to the 

channel-surfing model to that of longer (10-second) 

query lengths, which did not require the post-match 

filtering. The channel-surfing model gave the more 

consistent performance, avoiding the occasional 

“flashing” between contexts that was sometimes 

seen with the unfiltered, longer-query lengths. 

 

To further test the post-match surfing model, we 

took a single recording of 30 minutes at a distance 

of 8 feet, using the same physical and 

conversational set-up as described above. On this 

experiment, 80% of the direct matching scores were 

incorrect, prior to post-match filtering. Table 2 

shows the results of varying the expected dwell 

time within the channel surfing model on this data. 

The results are non-monotonic in the dwell time 

due to the non-linearity in the filtering process: for 

example, between L=1.0 and 0.75, an incorrect 

match overshadows a later, weaker correct match, 

making for a long incorrect run of labels but, at 

L=0.5, the range of influence of that incorrect 

match is reduced and the later, weaker correct 

match shortens the incorrect run length. 

 

Post-match filtering introduces one to five seconds 

of latency in the reaction time to channel changes 

during casual conversation. However, the effects of 

this latency are usually mitigated because a 

viewer’s attention typically is not directed at the 

web-server-provided information during channel 

changes; rather, it is typically focused on the newly 

selected TV channel, making these delays largely 

transparent to the viewer. 

 

These experiments validate the use of the audio 

fingerprinting method developed by (Ke et al., 

2005) for audio associated with television. The 

precision levels are lower than for the music 

retrieval application that they have described since 

broadcast television is not providing the type of 

distinctive sound experience that most music strives 

for. Nevertheless, the recall characteristic is 

sufficient for using this method in a living room 

environment. 

 

6. Discussion  

 

The proposed applications rely on personalizing the 

mass-media experience by matching ambient-audio 

statistics. The applications provide the viewer with 

personalized layers of information, new avenues for 

social interaction, real time indications on show 

popularity and the ability to maintain a library of 

the favorite content through a virtual recording 

service. These personalization applications can be 

modified in order to provide the degree of privacy 

each viewer feels comfortable with. Similarly, the 

applications can vary according to viewer-specific 

technical constraints, such as bandwidth and CPU 

time. 

 

The paper emphasizes two contributions. The first 

is that audio fingerprinting can provide a feasible 

method for identifying which mass-media content is 

experienced by viewers. Several audio 

fingerprinting techniques might be used for 

achieving this goal. The proposed framework 

adapted the system proposed by (Ke et al., 2005) 

due to its efficiency and accessibility. Once the link 

between the viewer and the mass-media content is 

made, the second contribution follows, by 

completing the mass media experience with 

personalized Web content and communities. These 

two contributions work jointly in providing both 

Surf Dwell Incorrect 
Time (sec) labels 

1.25 0 % 
1.00 22 % 
0.75 22 % 
0.50 14 % 
0.25 18 % 

 

 

Table 2. Match results on 
30 minutes of in-living room 
data after filtering using the 
channel surfing model. The 
incorrect label rate before 

filtering was 80%. 



simplicity and personalization in the proposed 

applications. 

 

The proposed applications were described using a 

setup of ambient audio originating from a TV and 

encoded by a nearby personal computer. As 

computational capacities proliferate to portable 

appliances, like cell phones and PDAs, the 

fingerprinting process could naturally be carried out 

on such platforms. For example, SMS responses of 

a cell phone based community watching the same 

show can be one such implementation. In addition, 

the mass-media content can originate from other 

sources like radio, movies or in scenarios where 

viewers share a location with a common auditory 

background (e.g., an airport terminal, party, or 

music concert). 
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